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Tricritical susceptibility of scalar systems near four 
dimensions 

I D Lawrie and F W Gedling 
Department of Physics, The University of Leeds, Leeds LS2 9JT, UK 

Received 3 September 1981 

Abstract. Tricritical scaling is studied in a single-component Landau-Ginzburg-Wilson 
model of spatial dimensionality d = 4 - E .  At first order in E ,  a single expression for the 
order-parameter susceptibility is exhibited, which behaves correctly in all limits and is 
uniformly applicable throughout the tricritical region. This is achieved by means of a 
renormalisation group scheme in which couplings depend explicitly on the order parameter 
and all three loci of ordinary critical points are controlled by a single fixed point. 

1. Introduction 

In the vicinity of a multicritical point, there occur several distinct, competing types 
of critical behaviour associated with the multicritical point itself, and with the various 
critical loci which emerge from it. Within the renormalisation group approach, it is 
usually straightforward to obtain both the leading singularities and singular corrections 
to the leading scaling behaviour, associated with each type of critical behaviour 
separately. It is more difficult to construct explicitly expressions for thermodynamic 
functions which correctly exhibit all the singularities in appropriate limits. 

The purpose of this paper is to display such an expression for the order-parameter 
susceptibility in the neighbourhood of a tricritical point (Griffiths 1970). In the case 
of a tricritical point, two special problems occur. Firstly, the borderline dimensionality, 
above which a mean-field-like description is adequate, has the value d = 3 for the 
tricritical point (Riedel and Wegner 1972) and d” = 4  for each of the three critical 
loci which meet there. (Readers who are unfamiliar with the tricritical phase diagram 
may like to consult the article by Lawrie (1979, referred to hereafter as I) for an 
elementary introduction.) This reflects the necessity of including, in an effective 
Hamiltonian of the Landau-Ginsburg-Wilson type, the operator qh6, in order to 
maintain thermodynamic stability in the tricritical region. Near the loci of ordinary 
critical points, this operator gives rise to corrections, which must appear in the correct 
scaling form, in addition to those arising directly from crossover associated with the 
operator qh4. By contrast, a bicritical point, for example, has the same borderline, 
d = 4, as the critical loci, and there the problem reduces asymptotically to calculating 
crossover scaling functions which depend only on a single scaling variable (Pfeuty et 
a1 1974, Amit and Goldschmidt 1978). Secondly, in the model we consider, two of 
the critical loci bound ‘wing’ coexistence surfaces which are symmetrically disposed 
about a symmetry plane containing the tricritical point. In the neighbourhood of one 
of these loci, where renormalisation group calculations are most easily carried out, 
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the full symmetry of the phase diagram is not apparent, but this symmetry must be 
respected by any expression which is to describe the whole tricritical region. 

In earlier work reported in I, it was shown that the additional operator d 6  could 
be systematically included in the framework of renormalised perturbation theory. 
This is not entirely trivial, since the exponents of the critical loci, and therefore also 
the scaling functions, must be calculated by means of an E expansion about four 
dimensions, where q56 is non-renormalisable As a consequence, additional higher- 
order operators (indeed, an infinite number of them) are required to remove all 
ultraviolet divergences. It was argued, however, that, at any finite order of the E 

expansion, only a finite number of these operators are explicitly required, provided 
that the additional corrections to scaling which they induce are ignored. The fixed 
points of the renormalisation group which control behaviour near the wings were 
located for the first time. For spatial dimensionality in the range 3 < d = 4 - E == 4 (to 
which this work is also restricted), a scaling form of the equation of state was obtained 
which describes crossover from each critical locus to the tricritical point. This was 
achieved, however, at the expense of concentrating on the neighbourhood of one 
locus at a time, with a consequent loss of the full symmetry. 

To remove this deficiency, we present here a modified renormalisation group for 
the single-component model, using effective coupling constants which depend explicitly 
on the order parameter M. In this scheme, the singularities at all three critical loci 
are controlled by a single Ising-like fixed point, and the symmetry is maintained at 
each stage. This scheme is described in B 2 .  We have not found it possible to construct 
the equation of state analytically by this method, and we concentrate instead on the 
susceptibility, which is obtained in 5 3. 

2. Renormalisation of a field theory model 

The model we consider is defined by the effective reduced Hamiltonian density 

(2.1) 

where AX denotes the set of higher-order operators and their coupling constants 
which, as discussed in 9 1, are required to effect a consistent renormalisation program. 
This model lacks a term proportional to 43, which would be required for a full 
description of tricriticality, but should be adequate to represent symmetrical systems 
such as metamagnets (Nelson and Fisher 1975). In the case of an Ising-like metamag- 
net, 4 ( x )  may be thought of as a staggered single-component spin density, and H as 
its conjugate staggered magnetic field. The remaining parameters then depend 
smoothly on temperature and on a uniform magnetic field, although, in the tricritical 
region, may be taken as a positive constant. Zero subscripts denote unrenormalised 
quantities; they have been omitted from H and 4 because no wavefunction renormali- 
sation is required at the one-loop level we consider explicitly. 

In the symmetry plane, H = 0, one critical locus, the lambda line, is located by 
the condition ro = roc(u0, U()) for which the inverse susceptibility vanishes, and the 
tricritical point uo = Ugt( v g )  by the simultaneous vanishing of the four-point vertex 
function at zero wavevector. The actual values of roc and uOt play no significant role 
and, within the dimensional regularisation scheme which we adopt, may consistently 
be taken as zero. As described in detail in I, all ultraviolet divergences may be 
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eliminated at one-loop order, by introducing renormalised parameters t, U and U, 
corresponding respectively to rO, uo and vO,  and by taking 

(2.2) 

where wo is determined in terms of the remaining parameters, and introduces no 
additional parametric dependence. As usual, the scheme involves an arbitrary para- 
meter @, with the dimensions of inverse length, which may be used to make t, U and 
U dimensionless. 

Away from the symmetry plane, with H f 0, these parameters do not provide a 
convenient description. It is then useful to exchange H for a staggered magnetisation 
variable M, by making the shift 

(2.3) 

and choosing M to ensure ( $ ) = O .  One then obtains a new set of unrenormalised 
parameters Ro, H30,  Uo, Us[), U ( )  which multiply successive powers of $. From the 
explicit calculations given in I, we obtain the following relations between renormalised 
and unrenormalised quantities: 

1 
A%’=- w ~ C $ ~  

8! 

C $ ( x )  = M + $(XI 

with higher-order counterterms given by 

P3+12U 7 0  - -)5 2 UsuK 
C L 4 - 3 F w l )  = Y v ’ K  

(2.9) 

(2.10) 

K = 2 . r rdJ2 / (  2 T ) ~  T ( $ d ) E .  (2.11) 

The M-dependent renormalised parameters are related to the M-independent quan- 
tities t ,  U, v by 

V 
r = t + l u M 2 + - M 4  (2.12) 

4! 

U 
Hj  = UM +- 3! M 3  (2.13) 

(2.14) 

(2.15) 

where M has been rendered dimensionless by extraction of C L ’ -  F / 2 .  The new variables 
Us0 and Us are clearly not independent of the remaining parameters, since the original 
Hamiltonian (2.1) contains only the four parameters H ,  ro, u0, vo .  However, the 
operator $’ scales with an independent exponent qS, and to obtain this behaviour 
correctly, it is essential to treat US as an independent variable within the renormalisa- 
tion group scheme. It is important to realise, therefore, that the relations (2.4142.10) 
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are in fact sufficient to renormalise the theory with five independent parameters which 
would result from removing the constraint (2.15).  Our procedure will be to write 
down and solve a renormalisation group equation involving all five independent 
parameters, and only when this is done to reintroduce the relations (2.12)-(2.15).  

The equation in question may be written in the form 

a a a a a 
a? aH3 aU aus av 

( 4 2  - + A 3 - - +  w - + A ~  - + A ~  - + + - I  = o (2.16) 

where x denotes the order-parameter susceptibility. Normally, such an equation 
embodies the statement that, when expressed in terms of unrenormalised quantities, 
the thermodynamic functions are independent of p. On this basis, the coefficients 
can be determined by differentiation of (2.4)-(2.8) with respect t o p  at fixed Ro, . . . , 00, 
with the results 

A2 = -T + E H : / ~ u *  

A3 = -$H3( 1 + ;E - 5 E U / ~ U  *) + { E T U ~ / ~ U  *} 

(2.17) 

(2.18) 

W = - $ E U ( ~ -  U/U*)+{&~U/~U*+~EH~U~/~U*} (2.19) 

A 5 = Us( 1 - 3 ~ / 2  + 7~ U / ~ U  *) + { ~ E H ~ v / ~ u * }  (2.20) 

A ~ = v ( ~ - E  + ~ U / ~ U * ) + { ~ E U : / ~ U * }  (2.21) 

y = 1 + ~ U / 6 u * .  (2.22) 

In these equations, the fixed-point coupling constant is 

U* = 2 / 3 K ,  (2 .23)  

and braces indicate terms which require special treatment in the next section. Unfortu- 
nately, in the presence of the counterterms (2 .9)  and (2.10),  the unrenormalised theory 
is not independent of p. It was argued in I that the renormalisation group equation 
may nevertheless be used in the normal way, provided that one ignores higher-order 
corrections to scaling associated with the operators $’, $*, etc, which are not properly 
included. In particular, critical exponents assodiated with the Ising-like fixed point 
U = U* are obtained by omitting the final terms of (2 .18) ,  (2.20) and (2.21),  and are 
given by 

p = $(1- &/3) (2.24) 

9 -  5 - -2(1+2E) 1 (2.25) 

9 = - ( 1 +  5 E / 3 )  (2.26) 

y = 1 + ~ / 6  (2.27) 

at this order, in agreement with standard results. 

3. Susceptibility in the tricritical region 

Before presenting our detailed calculation of the order-parameter susceptibility, we 
review briefly the scaling properties which are to be expected on general grounds. 
The critical loci where singularities occur are located by the vanishing of the two- 
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and three-point vertex functions at zero wavevector. At one-loop order, and possibly 
at all orders in a suitable renormalisation scheme, this occurs when 7 and H 3  vanish. 
The loci are then given by 

lambda line: t A  = HA = MA = 0 u > o  (3.1) 

(3.2) 

and meet at the tricritical point U = 0. The Ising-like singularities at these loci were 
found in I to be controlled by fixed points at U = U* and U = -tu* respectively. 
Inspection of (2.14), (3 .1)  and (3.2) reveals that all three fixed points correspond to 

wings: t, = 3u2/2u M: = * ( - ~ u / v ) ' "  H :  = (4u2/5u)M: u < o  

U = U*. (3.3) 

For 3 < d < 4, tricritical behaviour is associated with the Gaussian fixed point U = U = 
0, but, as explained in I, the mean-field-like tricritical exponents 

(3.4) 

Throughout the tricritical region, the susceptibility should be expressible in the 

(3.5) 

which is trivial in the classical approximation x - l =  7. Near the lambda line, for small 
t and M, we should have 

x - l " I f / Y f A ( M l t l - P y  (U - U * ) l t l - w ,  u/f \ -*)  (3.6) 

4 -1 yt= 1 1 - 2  
p -1 

1 - 4  

are not given directly by the renormalisation group. 

scaling form 

x-l = It/"f(Mltl-Pt, U I p ,  U )  

with exponents given by (2.24), (2.26), (2.27) and 

(3.7) 

Near the wings, when i = t - t, and, say, M = M - M :  are small, extra corrections 
appear due to the lack of symmetry, and we expect 

= -- :E  + 0 ( E 2 ) .  

(3.8) - 1  x = ~tyfw(if~i/-~, ( U *  + 2u)li/-", L i & / - * 5 ,  u/ i l -w)  

with 

U 5  = Us( U, M r  ) = uM,' (3.9) 

and the exponent q5 given by (2.25). All the scaling functions f, should be analytic 
in their arguments. Those appearing in (3.6) and (3.8) exhibit the singular behaviour 
expected in the immediate vicinity of the critical loci; additional, analytic corrections 
may in general appear in intermediate regions described by (3.5). 

We wish to derive an expression for the scaling function f in ( 3 . 9 ,  which reduces 
to (3.6) or (3.8) in appropriate limits. This is accomplished by solving the renormalisa- 
tion group equation (2.16) with a boundary condition given by direct perturbative 
calculation as 
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where j ( q )  is the Fourier transform of 4 ( x ) .  As usual, solution by the method of 
characteristics yields the relation 

(3.1 1) 

where, for brevity, U, denotes the set of parameters T,  H3, U, Us, U and, if their 
respective coefficients in (2.16) are denoted by A,, the characteristic functions of the 
free parameter A are defined as solutions of 

Ut( l )  = vi. (3.12) 
a Ul 
ah 

A -=A,[U,] 

The various critical exponents arise from exponentiation of the logarithms in (3.101, 
to which end we fix the value of A by the condition 

? ( A )  = 1, (3.13) 

(3.14) 

Solution of the characteristic equations (3.12), with A; given by (2.17)-(2.21), is 
complicated by the inhomogeneous terms indicated by braces, and we have not found 
it possible to obtain exact solutions. To obtain approximate solutions, we observe 
that the inhomogeneous terms are all of one-loop order, and that solutions of the 
truncated equations obtained by omitting them already contain the correct exponents 
(2.24H2.26). The following procedure is therefore consistent both with the expected 
scaling behaviour and with our one-loop approximation: we first solve the truncated 
equations then substitute the approximate solutions into the inhomogeneous terms, 
and finally resolve the full equations to find improved approximations. In carrying 
out the first step, it is possible to retain the whole of equation (2.17). This is desirable, 
because critical singularities should occur only when T and H3 are simultaneously 
equal to zero. The solutions obtained in this way are 

(3.15) 

(3.16) 

with crossover controlled by the function 

X(A, U ) = [ l  +(u/~*)(lA/-"~- I)]-'. (3.20) 

For future reference, we note that X may be expanded as 

x =  l+O(l- loop) .  (3.21) 

With the same approximation, the prefactor in (3.11) may be written as 

(3.22) AX 1 / 3  
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We may now use (3 .11) ,  (3 .13 )  and (3 .14)  to express the inverse susceptibility as 

(3 .23)  X-’ = AX’ / ’ {1+  ( E / ~ U * ) A - ( ~ + ” ~ ’ X ’ ’ ~ [ H ~ +  ( T U ~ / S U ) ( X ~ ’ ~  - 
with A determined as the solution of 

A = T - H H : / ~ U + ( H : / ~ U ) X ~ ’ ~ .  (3 .24)  

The original parameters r, U ,  U and M may now be reintroduced via (2.12)-(2.1S),  
and one sees explicitly that x is a function only of M 2 ,  maintaining the full symmetry 
of the phase diagram. 

While (3 .23 )  is satisfactory for negative U ,  it fails to satisfy (3 .6 )  near the lambda 
line, since the exponent V does not appear correctly. However, a simple modification 
suffices to ensure correct behaviour in all limits. Guided by the appearance of F and 
Us in (3 .11 ) ,  we replace T and Us in (3 .23)  by the expressions in square brackets in 
(3 .15)  and (3 .18) .  The expansion (3 .21 )  shows that the terms which this modification 
adds to x-’ are effectively of two-loop order, and the modification is thus consistent 
with our one-loop approximation. Our final result then reads 

(3 .25 )  

- 

x -  - 1  - AX’/’[1 +(E/6U*)h-(l+f/2)~5/3Y2] 

with 

Y = H3- ( T U S / ~ U ) +  ( l / 5 U ) X S ” A [ ( U s -  H j v / U ) +  ( H ) v / u ) X ” ’ ] .  (3 .26 )  

We now verify that this expression behaves correctly near the critical loci. Consider 
first the neighbourhood of the lambda line, where U is positive, and t and M are 
small. We expand T ,  H 3  and U in powers of t and M 2 ,  retaining only the leading 
terms, with the results 

7 - H : / 2 U  = t  H : / 2 U  = u M 2  (3 .27 )  

Us - H ~ u /  U = 0 (3 .28)  

H ~ u /  U uM. (3 .29 )  

Evidently, A is also small in this region, and (3 .24)  yields 

A = t + uM2(uA ‘ /2 /u*)2 ’3 .  

Writing 

(3 .30 )  

with p given by (2 .24 )  we have 

x = 1 i- x x F / 3 ,  (3 .32)  

so that X is analytic in x. With these approximations, (3 .26 )  may be written as 

Y = u M [ l  + x - w ( v t - w ) ]  ( 3 . 3 3 )  

where a power of U and some numerical factors have been absorbed into U. Up to 
an overall factor, the susceptibility may then be written as 

x - l =  t V A F / ‘ { l  + ( ~ / 6 ) x X - ” [ l +  X-w(ut-w)]2} (3 .34 )  

which has the required form (3 .6 ) ,  with all non-universal quantities absorbed into the 
scaling variables. Additional singular corrections involving (U - U *)ltlE” arise from 
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the expansion of X ,  whose leading term was retained in (3.30), and analytic corrections 
arise from the terms neglected in (3 .27H3.29) .  

Near the wings, a similar analysis leads to a function of the form (3.8). Corrections 
due to the operator 4' arise from taking 

U , - H ~ U / U " U M :  = * U 5  (3.35) 

in place of (3.28). 
Thus, the expression (3.25) does indeed have the correct limiting forms near all 

three critical loci. It cannot, however, be written in the form (3.5). This difficulty 
arose also in I, where it was found that the equation of state had the formal appearance 
of scaling, but with incorrect Gaussian tricritical exponents 

yo= 1 4 0 - 2 E  -1. ' P o = - ( l - ~ ) .  (3.36) p -1. 
0 - *(I - SE 1 

It was pointed out that, quite apart from the theoretical prejudice expressed by (3.5), 
these exponents do not correspond to the actual behaviour. Thus, even when fluctu- 
ation corrections to mean-field theory are taken into account, the actual relation 
between t and M near the tricritical point is governed by the exponent 

(3.37) 

for 3 < d  <4. It is interesting to note that the functions (2.12)-(2.15) may be written 
in terms of either set of exponents (3.4) or (3.36) as, indeed, may the entire classical 
theory. Thus we have, for example, 

1 
Pt = P o / (  1 - 4 n )  = s 

7 = I"( 1 +:(ut-~r))(Mf-Pr,)*+- 1 (vt-.+'")(Mf- 00 ) 4 )  

4! 

(3.38) 
1 
4! 

It is straightforward to verify that (3.25) scales with Gaussian exponents, but that if 
one tries to rewrite it in terms of the correct exponents (3.4) extraneous terms of the 
form 

) = P(  1 + f ( u r - ~ q M t - " ) * + -  v (Mt-4)4  . 

( I / u * ) f " - '  11) (3.39) 

appear. The solution adopted in I, and first suggested by Sarbach and Fisher (1978a, b), 
is to introduce an extra variable p which may be thought of as measuring the range 
of pairwise interactions in an underlying lattice model. In the field theory context, 
one introduces a factor p - ' ld,  multiplying the gradient term of the Hamiltonian (2.1),  
the net effect of which is the replacement u * + u * / p .  In this way, we may formally 
recover an expression of the form (3.5),  except that the scaling function has an 
additional argument 

p t  -% 4 p =-1. 2 ( 1  - E ) .  13.40) 

4. Conclusions 

For spatial dimensionality in the range 3 < d < 4, we have shown how to construct 
crossover scaling functions for thermodynamic quantities which are uniformly valid 
throughout the tricritical region. To our knowledge, this has been achieved previously 
only in the spherical model limit, n +a, of an n-component model tSarbach and 
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Fisher 1978a, b). In this limit, however, classical behaviour is obtained near the wings 
of the phase diagram, rather than the Ising-like behaviour which we obtain, and which 
is to be expected for any finite n. Our result for the order-parameter susceptibility 
is given in (3.25). It is doubtful, however, whether a suitable form of the equation 
of state can be obtained by our method. The reason for this is that it involves 
combinations of t, U, U and M which cannot be simply expressed in terms of our basic 
variables defined in (2.12)-(2.15). 

To illustrate our result, we plot contours of the susceptibility near the wing 
coexistence surface in the (H,  t )  plane for fixed, negative U, with E = 1. We first 
normalise the variables t, M and H according to 

t' = t / t C ( U ,  U )  m = M/MC(u,  U )  H' = H/Hc(U,  U). (4.1) 

1 6  

1 2  

t '  

0 0 4  0 8  1 2  1 6  
H' 

0 O L  0 8  1 2  1 6  

H '  

Figure 1. Contoursof the inverse susceptibility in the ( H ' ,  1 ' )  plane for negative U calculated 
at O ( E )  with E = 1. The bold curve represents the wing coexistence curve for positive H ' ,  
which terminates at the triple line with H '  = 0, and at a wing critical point ( H ' ,  1 ' )  = (1, 1 I .  
Parameters defined in the text have the values: ( a )  y = 0.5, z = 1; ( h )  y = 0, I = 0 .25 .  
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When this is done, two additional parameters remain, namely 

y = ( 3 u 2 / 2 u ) 1 / 2  z = (2u /3 ) ’ /2p /u* .  

In particular, the crossover function X takes the form 

where A is determined as the solution of 

(1 - 3m2)A = (1 - 3 m 2 ) t ’ +  m4(5 - 3 m 2 )  - 2m2(1 - m 2 ) X 2 / 3  

(4.2) 

(4.4) 

As reported in I, and by Sarbach and Fisher (1978a, b) in the many-component 
limit, the parameter z represents a non-universal dependence of the scaling function 
on U and p. It seems clear that this apparent non-universality in three dimensions 
arises from the fact that, while thermodynamic stability requires U to remain strictly 
positive, the Gaussian fixed point has U = 0. This reflects the marginality of the 
operator c $ ~  in three dimensions, and one may say that the non-universality reflects 
the failure of an E expansion about four dimensions to detect logarithmic corrections 
to tricritical behaviour in three dimensions (Stephen 1980). In  the context of the field 
theory model we have studied, a fully correct analysis, including both these logarithmic 
corrections and Ising-like behaviour near the critical loci, would involve simultaneous 
expansions about three and four dimensions, and this has not yet been achieved. 

On the other hand, the parameter y represents power-law corrections to the leading 
crossover behaviour. In the asymptotic tricritical region, one should set y = 0. When 
this is done, an unexpected singularity occurs in the vicinity of the triple line if z is 
too large. While this singularity may well be an artefact of our approximations, we 
note that in the many-component limit (Sarbach and Fisher 1978a, b) there is no 
tricritical point if z is too large. 

For direct comparison with I, we show in figure l (a )  contours obtained for z = 1 
and y = 0.5, where corrections to the asymptotic behaviour remain. In figure l ( b )  we 
show contours obtained for z = 0.25 and y = 0, which should be representative of 
behaviour in the asymptotic tricritical region. In contrast with the corresponding 
figure in I, we observe that the symmetry of the phase diagram is maintained in a 
perfectly smooth manner. In the absence of a suitable equation of state, values of 
H ’  have been obtained by numerical integration of the inverse susceptibility, and for 
this reason, the region to the right of the coexistence curve is excluded. 
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